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CONDITIONS UNDER WHICH THE
KERNEL OF A PSEUDOCHARACTER ON
A GROUP IS A NORMAL SUBGROUP

A. 1. SHTERN

ABSTRACT. We obtain several necessary and sufficient conditions under which

the kernel of a pseudocharacter on a group is a normal subgroup of the group.

§ 1. INTRODUCTION

In this note, we obtain necessary and sufficient conditions under which the
kernel of a pseudocharacter on a group is a normal subgroup of the group.
For the generalities concerning pseudocharacters, see [1-4].

§ 2. PRELIMINARIES

Lemma. Let G be a group, let N be a normal subgroup of G, and let 7
be the canonical epimorphism of G onto G/N. If a pseudocharacter f on G
vanishes on N, then there exists a pseudocharacter ¢ on the group G/N such
that f = op. If G is a topological group, N is closed, and f is continuous,
then ¢ s continuous.

Proof. Let G be a group, let N be a normal subgroup of G, let g € G,
n € N, and let f be a pseudocharacter on G vanishing on N. Let m € N.
Then m|f(gn) — f(9)| = |f(gn)™) = mf(9)| = |f (0" Tz—r 9~ 19" )n) -
f(g™)] < e, since (Hi:m_lg_kngk)n € N; this implies that f(gn) = f(g).
This means that f is constant on every coset of N in GG. Define a real-valued
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function ¢ on G/N by setting ¢(gN) = f(g) (since f is constant on the
cosets of N, it follows that this definition is correct). The above formula for
m|f(gn) — f(g)|, together with a similar formula for |f(gn)~™) — f(g)~ ™|,
shows that ¢ is a pseudocharacter on G/N, and that ¢ = 1 o m, where 7 is
the canonical epimorphism of G onto G/N. The continuity assertion follows
immediately from the last formula.

& 3. MAIN RESULT

Theorem. Let G be a group, let f be a pseudocharacter on GG, and let N =
ker f, i.e., N ={g € G: f(g) =0}. The following conditions are equivalent:

1) N is a normal subgroup of G;

2) N contains the products of its elements, i.e., f(ning) = 0 for every
ni,ng € N;

3) f(gn) = f(g) for every g € G and n € N.

Proof. Recall that N is invariant with respect to all inner automorphisms of
the group G (see [1]). Since the restriction of f to every amenable subgroup
is an ordinary homomorphism of this subgroup to R (see [1]), it follows that
flg™') = —f(g) for every g € G. Therefore, 2) implies 1).

As was established in the proof of the lemma, 1) implies 3).

Since it follows from 3) that f(n1ns) = f(n1) = 0 for ny,ny € N, it follows
that 3) implies 2).

This completes the proof of the theorem.

§ 4. DISCUSSION

The example of a Guichardet—Wigner pseudocharacter on the universal
covering group of the group SU(1, 1), whose kernel is not a normal subgroup
because this kernel is nontrivial and the group is simple, shows that the
kernel of a pseudocharacter need not be a normal subgroup.
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